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Abstract

In this paper, a dynamic analysis is presented for coupled flexural-warping torsional vibration of asymmetric shear
wall structures in tall buildings. Due to the asymmetry of the structure, the free vibration is a coupled one, where
laterally flexural vibrations in two orthogonal directions are coupled by a warping torsional vibration. Based on the
continuum approach and D’Alembert’s principle, the governing differential equation of free vibration and its corre-
sponding eigenvalue problem for asymmetric shear wall structures are derived. Based on the theory of differential
equations, an analytical method of solution is proposed to solve the eigenvalue problem and a general solution is
derived for determining the natural frequencies and associated mode shapes of the structure. The proposed analysis is
less approximate, and the numerical investigation pertaining to coupled vibration analysis of a generally asymmetric
shear wall building shows that the results from the proposed analytical method and FEM analysis agree well. It is
expected that the proposed analytical method of solution would enlarge the content of coupled vibration in the theory
of dynamics of structures from theoretical research’s point of view. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a shear-wall tall building, the functional requirements generally result in asymmetric location of the
structural elements, as shown in Fig. 1. In such structural configuration, the laterally flexural deflections in
two orthogonal directions and the warping torsional rotation can no longer be treated separately due
to their coupling in the governing differential equation of free vibration. In the past several decades, a large
number of articles have been published on the coupled vibration analysis of asymmetric structures (Gere
and Lin, 1958; Medearis, 1966; Heidebrecht and Raina, 1971; Rutenberg and Heidebrecht, 1975; Ruten-
berg and Tso, 1975; Kan and Chopra, 1977; Reinhorn et al., 1977; Rutenberg et al., 1977; Balendra et al.,
1982, 1983, 1984; Zalka, 1995, 2000; Ng and Kuang, 2000). In most of these studies, the continuum ap-
proach was used to formulate the governing equations for the problem of torsional coupling including St.
Venant and/or warping torsions of tall structures.
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Fig. 1. Floor plan of a general asymmetric shear wall structure.

This paper presents a theoretical analysis of coupled flexural-warping torsional vibration for generally
asymmetric shear-wall structures in tall buildings. The analysis includes the frequency and mode shape
determinations for the coupled deflections (due to the laterally flexural deformation) and rotation (due to
warping torsion deformation) of the structure. Based on the continuum approach and the D’Alembert’s
principle, the governing equation of the structure in free vibration and its corresponding eigenvalue
problem, that is a set of the fourth-order ordinary differential equations for two laterally flexural vibrations
coupled with a warping torsional vibration, are derived. Based on the theory of differential equations, an
analytical method of solution is proposed to solve the eigenvalue problem and a general solution is derived
for determining the natural frequencies and associated mode shapes of the structure. The proposed ana-
lytical method of solution is less approximate. A comparison is made between the results from the proposed
method and FEM analysis of an example asymmetric shear-wall structure, and it is shown that two sets of
results are in very good agreement.
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The proposed analysis is derived from a uniform model of shear wall structures. In practice, the
thickness of shear walls in a tall building varies over the entire height of the structure. However, the change
rate of the walls is generally low along the structural height; an equivalent uniform structure may then
generally be used in the design practice to replace the non-uniform one, particularly at the preliminary
design stage, for the drift and dynamic analyses (Stafford Smith and Coull, 1991; Taranath, 1997).

2. Theory

A general asymmetric shear-wall structure of height A is shown in Fig. 1. In the analysis, the shear wall
structure is considered as an equivalent flexural cantilever (Rutenberg et al., 1977; Balendra et al., 1984;
Zalka, 1995), which is located at the centre of flexural rigidity, O (Kuang et al., 1991). Under the action of
lateral loading, the flexural cantilever beam may undergo deformations of both lateral flexure and warping
torsion (Stafford Smith and Crowe, 1985; Stafford Smith and Coull, 1991). The vertical x-axis is chosen
over the structural height and through the point O, and the co-ordinate (yc,zc) represents the position of
the geometric centre of the floor plan C in the yOz co-ordinate system. It is assumed that the structure has a
uniformly distributed mass m, mass polar moment of inertia my, flexural stiffnesses £1, and EI, in y and z
directions, respectively, and warping torsion stiffness E1,, along the structural height. Details of calculation
of flexural and torsional stiffnesses and geometric properties are given in Appendix A.

2.1. Governing equation for coupled vibration

Let y(x,¢) be the lateral deflection of the point O in y-direction, z(x, ¢) the one in z-direction, and 6(x, ¢)
the torsional rotation of the floor plan about the point O at the height x (0 <x < H) and time ¢. Based on
the D’Alembert’s principle (Meirovitch, 1986), the governing equation of the natural vibration for a shear
wall structure is derived conveniently by substituting inertial forces into the equations of static equilibrium:

*X(x, 1) *X(x, 1)
B TMo—s

In Eq. (1), X, E and M, represent the displacement vector and flexural stiffness and mass matrices, re-
spectively, given by

—0. (1)

y(x, 1) EI, 0 O m 0 —mzc
X=2<z(x¢t) p, G=|0 EL 0|, My= 0 m myc |, (2)
0(x,1) 0O 0 EI, —mzc myc mr}

in which the inertial radius of gyration is

L+ B
Vm = \/ 12 +y(2;+2%7 (3)

where L and B are the length and width of the floor plan as shown in Fig. 1.
As there are zero deflection and zero rotation at the fixed base, and zero moment and zero resultant
shear at the free top of the structure, the corresponding boundary conditions of Eq. (1) are as follows:
oX ?*’X X
XZEZOatx:()andﬁzﬁzomx:H. (4)
The governing equation (1) is considered as a set of dynamic equilibrium equations, and can be written
to the following three equations:
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*y(x, 1) o2
EI, P + mﬁ [y(x, 1) — zcO(x,t)] = 0, (5)
0*z(x, 1) o?
EL— G+ mzs[2(x, ) +yc0x,0)] = 0 (6)
and
*0(x, 1) 0?
EIL,(x) o M [zey(x,1) — yez(x,£) — 1 0(x,1)] = 0. (7)

Egs. (5) and (6) describe that the sum of all forces applied on the floor plan in y and z directions should
be equal to zero, i.e. > F, = 0and > F, = 0; Eq. (7) describes that the sum of all moments about the centre
of flexural rigidity O applied on the floor plan should be equal to zero, i.e. > M, = 0.

2.2. Eigenvalue problem

The motion in free vibration at any point of the structural height x is considered to be harmonic one, and
the deflected shapes are independent of time ¢. The displacement vector can then be written, in a separable
form of variables x and ¢, as

X(x,#) = U(u) sinwt, (8)
in which u = x/H, o is the circular frequency, and the mode shape vector is
y(u)
Uu) =1 z(u) ;. 9)
0(u)

Substituting Eq. (8) into Eq. (1) and carrying out the necessary differentiation lead to the eigenvalue
equation of the asymmetric shear-wall structures in free vibration:

EUY (1) — 0®MU(u) = 0, (10)
in which the mass matrix is

M = H’M,. (11)
The boundary conditions of Eq. (10) are

Uu)=U(u)=0atu=0 and U’(u) =EU"(u) —GU'(u) =0atu=1. (12)

3. Method of solution
3.1. Derivation

To obtain an analytical solution to the eigenvalue problem of the coupled vibration of asymmetric shear
wall structures, Eq. (10) may be rewritten in the following form:

UY (1) — 0*NU(u) = 0, (13)

in which
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B 0 —fzc

N=1 0 B By | (14)
Fx pE R
where the structural parameters
o) mH4 o) mH4 2 mH4 ]/'2
= =— =—r. 15
ﬂy EIy ’ ﬁz EIZ ’ ﬁ() EIw m ( )

According to the theory of differential equations, the mode shape function given by Eq. (9) can be
expressed as

y(u) a
Uu) =< z(u) p =< b pCe™. (16)
O(u) 1

Substituting Eq. (16) into Eq. (13) yields

a a a .Bi(a_ZC)
bspt— NS b s ={bSpt— B2 (b + yc) = 0. (17)
1 1 1 %(—§a+§b+l)
Then,
zc
a=-—"—, (18a)
)
p\o
Jc
b= ——— (18b)
#(5) -
and
1 pZ 2 Zc Yc
F<6> +r—261——2b—1:0 (180)
0 m m

Substituting Eqs. (18a) and (18b) into Eq. (18c) yields

2

iy e oo 1 19

ﬁZ ) l,.Z 5 2 l,.Z 5 2 - ( )
/ EIOR ORS

It can be seen that Eq. (19) is a characteristic equation of coupled vibrations with a third-order poly-

nomial for (p?/w)’, and the nature of the roots p is such that the roots can be written in the following
form:

(If)zkf (=1.2,3) (20)

(6]
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hence,
P’ =tho, tho, tho. (21)
Letting
i=ko (j=1,23) (22)
yields

P2 = Zt;»l, D34 = :l:i)ul,
Dse = :l:;hla P1g = Zl:ijuz, (23)

Doo = £z, puip = Fids.

This enables the mode shape vector U(u), expressed by Eq. (16), to be rewritten in the following form:

y(u) G
Uw) = § 2(u) o =[Ki(w) Ky(u) Ki()]] C: o, (24)
where
Ci
Cp
Ci=<"7 25
J i (25a)
Cja
and
ajcoshAd;u a;sinhdu a;jcosiu a;siniu
K;(u) = | bycoshiu b;sinhAu b;cosiu b;sinfu |. (25b)
coshiu  sinhdu  cosiu  sindu
From Egs. (18a) and (18b), the coefficients in Eq. (25b) are
z N
ajszzica bj:kz —. (26)
5 g

By substituting the mode shape vector U expressed by Eq. (24) and its different order derivatives into
the boundary conditions Eq. (12), the following set of homogeneous linear algebraic equations are ob-

tained:
U(0) Ki(0) K»(0) Ks(0) C
v | _ Ko Ko Ko<l _, o
U (T KD K K ) @
vy ) LK) k) k) LS

in which the coefficient matrix is expressed by
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aj O dj O
b; 0 b; 0
1 0 1 0
O a]‘)»j O a]‘)»j
K;(0) - 2 ; i
K/j’(l) = | aj2jcoshl; a;d;sinh};  —apiicosi; —a;lisind; |. (28)
Kj”( 1) biiicoshi; byiisinhji;  —biiicosi; —biiisin,
/lf cosh Z; )vf sinh 4; —212. COS A, —/Lf sin/;
ajZ;sinhi; a;2lcoshl; aiiisini;  —a;icosi,
biiisinhi;  b;2lcoshl;  biiisini;  —b;icos,
Alsinh;  Ajcoshi;  isind;  —Alcosk

The solution of Eq. (27) consists of two parts. The first part is the eigenvalue, which corresponds to the
natural frequency of coupled vibration. The second part is the eigenvector, which corresponds to the vi-
bration mode shape. An analytical method of solution, which is based on the theory of differential equa-
tions, has been developed to estimate the natural frequencies and associated mode shapes of the asymmetric
shear wall structures in coupled vibration.

3.2. Natural frequencies and associated mode shapes

Mathematically, the nontrivial solution to Eq. (27) can only be obtained when the determinant of the
coefficients vanishes, i.e.

Ki(0) K»(0) K;(0)
K;(0) K,(0) K;(0 , , ,
Ki,&; KEEI; K':'Elg = d237323(1 + cosh 2; cos ) (1 + cosh 2,c08/5)(1 + cosh A3cos13) = 0.
KI() K/() K(1)
(29)
For the case of triple coupling, the coefficient
d = 4(a1by + axbs + asby — brar — bra; — 5301)4 # 0; (30)
for the case of double coupling, the coefficient
d=4(b; — by)* £0. (31)

The values of 4;, 4,, 43 should not be equal to zero at the same time, then
1+ coshicosd; =0 (j=1,2,3). (32)
The solutions of Eq. (32) are therefore obtained

A= =) = 1875
W =07 =0 = 4.694
A =20 =) = 7.855 (33)
A0 =8 = 2% = 10.996
L= T8
1
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Therefore, from Eq. (22) the coupled frequencies of a general asymmetric shear-wall structure can then
be calculated by

oA
0] J
w’ =L, (34)
J kj
where i (=1,2,3,...,n,...) is the vibration mode number and j (= 1,2, 3) is the vibration shape number.

In the vibration shape function (24), the unknown constants ¢; (j =1,2,3 and / = 1,2, 3,4) expressed
in Eq. (25a) can be determined from Eq. (27).

4. Numerical example

In order to validate and illustrate the proposed method and the computation procedure, an numerical
investigation is presented of the coupled vibration analysis for a general asymmetric shear-wall building of
height H = 75 m, consisting of 25 stories of 3-m high, with the plan arrangement of L = B =24 m, as
shown in Fig. 1. The structure consists of eight walls of 0.25-m thick and 6-m long (¢ = 6 m). An elastic
modulus £ = 20 x 10® kN/m? and the intensity of floor slabs p = 2,350 kg/m?® are assumed for normal
concrete properties. The thickness of floor slab is 0.15 m. The natural frequencies of coupled lateral-tor-
sional vibration and associated mode shapes are determined as follows:

(1) Values of flexural and torsional moments of inertia /,, I, and I, for all the shear walls are given in
Table 1. The stiffnesses El,, EIL, EI, are then determined using Eqs. (A.1) and (A.2) in Appendix A,

EI, =990.70 x 10° kNm?*, EL = 574.53 x 10° kNm*, EI, = 136.66 x 10° kN m*.

The location of the geometric centre C of the floor plan is determined using Egs. (A.1) and (A.3),
yc=4463 m and zc=-7.631 m.

The characteristic structural parameters f3,, fi., and f are calculated by employing Eq. (15),

B,=1470s, B, =1931s, f,=1.652s.

(2) By substituting values of the geometric properties and characteristic parameters of the structure into
Eq. (19), the characteristic equation is expressed:

0'366<;ﬁ>21 0‘1142 - 0‘3342 0
@ 0268(2) —1 0463(2) 1

(0]

Table 1

Flexural and tortional moments of inertia of shear walls
Wall i Vi Z; I,; (m*) L; (m*) I,; (m®)
1 0 12 11.72 x 1073 15.19 863.46
2 6 12 7.81 x 1073 4.50 11.09
3 18 12 7.81x1073 4.50 493.08
4 24 12 7.81 x1073 4.50 1,220.07
5 3 0 4.50 7.81 x 1073 1,734.34
6 21 0 4.50 7.81 x 1073 1,735.60
7 3 24 4.50 7.81 x1073 86.06
8 19.5 24 36.00 15.63 x 1073 689.43

2 49.54 28.73 6,833.13
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Table 2
Circular frequencies of coupled vibration for the first three modes
Mode i A’]@ w(li) w(zi) “’gi)
1 1.875 1.622 2.004 3.843
2 4.694 10.163 12.556 24.083
3 7.855 28.457 35.156 67.432
0.059 | 0380 /1 0.6 0.039 1 -0.080 | 0.462 1
2(u) (i) " O(u)
(u) z(u)
O(u)
O(u) z(u)
0,"=1.622 ¢! 0,V =2.004 5" 0" =3.843 5!
0.059/080 "1 0.039 1 0.080 \ 046 f
aw 06 ¥(u) o(u)
z(u)
w(u y(u
O(u
O(u) 2(u)
o?=10.163 5" ®?=12.556 " ;=24.083 5"
0.059/ 9380 —1 -0,039 7 -0.080 \ 0.46, 7
2(u) 0699 (u) 6(u)
l (M
z(u)
O(u) 6(u) 2(u)
0,=28.457 5! 0,=35.156 5 ®;7=67.433 5

Fig. 2. Circular frequencies and associate mode shapes for the first three modes.
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Table 3
Compearison of coupled frequencies between proposed method and FEM analysis
Mode i ol ol w?
1 Proposed method 1.622 2.004 3.843
FEM analysis 1.592 1.963 3.753
2 Proposed method 10.163 12.556 24.083
FEM analysis 9.7943 12.207 22.906
3 Proposed method 28.457 35.156 67.432
FEM analysis 27.292 33.395 63.724

The three roots of the characteristic equation are then obtained:

)\ 2 4.701

<p> = ¢ 3.080.
@ 0.837
From Eq. (20), k; = 2.168, k, = 1.755, and k; = 0.915.

(3) The first three circular frequencies of the structure in coupled vibration are calculated using Eq. (34)
and presented in Table 2. The associated mode shapes can be obtained using Eqs. (24)—(27) and are plotted
in Fig. 2.

A comparison of coupled vibration frequencies of the structure is made in Table 3 between the results
from the proposed analytical method of solution and a finite element analysis. The finite element analysis is
performed by employing the computer program ETABS (Wilson et al., 1995), in which the multi-bent walls
are considered as an assembly of discrete members comprised of finite column and beam elements. It can be
seen from Table 3 that two sets of result from the proposed method and FEM analysis agree well.

5. Conclusions

Coupled flexural-warping torsional vibration analysis is presented in this paper for generally asym-
metric shear-wall structures in tall buildings. Owing to the asymmetry of the structure the free vibration is a
coupled vibration, where lateral flexure vibrations in two orthogonal directions are coupled by a warping
torsion vibration about the vertical axis. Based on the continuum approach and D’Alembert’s principle, the
governing differential equation of free vibration and the corresponding eigenvalue equation to the problem
are derived. Based on the theory of differential equations, an analytical method of solution is proposed and
a general solution to the eigenvalue problem is derived for determining the coupled natural frequencies and
associated mode shapes. The numerical investigation pertaining to coupled vibration analysis of an asym-
metric, multi-bent shear-wall building is presented, and the results from the proposed analytical method are
in good agreement with those from a comprehensive package programme for analysis of building struc-
tures. The proposed method is less approximate and provides an efficient means for dynamic analysis of
asymmetric shear wall structures in coupled vibration. From the viewpoint of theoretical research, the
proposed analytical method of solution would be considered to enlarge the content of coupled vibration in
the theory of dynamics of structures.

Appendix A
A general asymmetric shear-wall structure shown in Fig. 1 can be represented by an equivalent cantilever

beam, deforming in both lateral flexure and warping torsion. The cantilever is considered to locate at the
centre of flexural rigidity O, whose location in an arbitrarily selected co-ordinate system (y,z) is given by
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V.EIL; ZiEL,;
_ Zlyl Z,l = EIZI ey (Al)

Yo = ZiEIZJ' ’ o= ZiElyJ 7

where the co-ordinates (3, z;) represent the location of the centre O; of the ith wall in the (y,,Z;) co-ordinate
system.
The flexural stiffness and warping stiffness of the equivalent cantilever are

2 2
Ely=Y Ely, EL=Y EL, El,=) L(yj - )70) EL, + (zj - zo> EIWJ, (A.2)

i

where El,; and EI; are the flexural stiffnesses in y and z directions of the ith wall in its local co-ordinate
system.

The vertical axis x is chosen over the structural height and through the point O, and the axes y and z are
respectively parallel to y and Z as the reference co-ordinate. The location of the geometric centre C of the
uniform floor slabs in the co-ordinate system yOz is given by

Yc =Yc — Yo Z¢c = Zc¢ — Zo, (A.3)

where the co-ordinate (j,zc) is the location of the point C in the co-ordinate system (7,Z).
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